Copied to
clipboard

G = C5×C24.3C22order 320 = 26·5

Direct product of C5 and C24.3C22

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C24.3C22, (C2×D4)⋊4C20, (C2×C20)⋊29D4, C2.9(D4×C20), (D4×C10)⋊28C4, (C2×C42)⋊5C10, C209(C22⋊C4), C10.140(C4×D4), C23.9(C2×C20), C24.3(C2×C10), (C22×D4).2C10, C22.39(D4×C10), C10.39(C41D4), (C23×C10).3C22, C10.136(C4⋊D4), C10.65(C4.4D4), C22.39(C22×C20), C23.63(C22×C10), (C22×C20).576C22, (C22×C10).454C23, (C2×C4×C20)⋊18C2, (C2×C4)⋊6(C5×D4), (C2×C4⋊C4)⋊4C10, C41(C5×C22⋊C4), (C10×C4⋊C4)⋊31C2, (D4×C2×C10).14C2, C2.5(C5×C4⋊D4), C2.2(C5×C41D4), (C2×C22⋊C4)⋊3C10, (C10×C22⋊C4)⋊7C2, (C2×C4).44(C2×C20), C2.8(C10×C22⋊C4), C2.3(C5×C4.4D4), (C2×C20).438(C2×C4), (C2×C10).606(C2×D4), C22.24(C5×C4○D4), C10.136(C2×C22⋊C4), (C22×C10).88(C2×C4), (C22×C4).90(C2×C10), (C2×C10).214(C4○D4), (C2×C10).327(C22×C4), SmallGroup(320,891)

Series: Derived Chief Lower central Upper central

C1C22 — C5×C24.3C22
C1C2C22C23C22×C10C22×C20C10×C22⋊C4 — C5×C24.3C22
C1C22 — C5×C24.3C22
C1C22×C10 — C5×C24.3C22

Generators and relations for C5×C24.3C22
 G = < a,b,c,d,e,f,g | a5=b2=c2=d2=e2=1, f2=e, g2=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, fbf-1=bc=cb, gbg-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd, ef=fe, eg=ge >

Subgroups: 466 in 258 conjugacy classes, 106 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C20, C20, C2×C10, C2×C10, C2×C10, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22×D4, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C22×C10, C24.3C22, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C22×C20, C22×C20, D4×C10, D4×C10, C23×C10, C2×C4×C20, C10×C22⋊C4, C10×C4⋊C4, D4×C2×C10, C5×C24.3C22
Quotients: C1, C2, C4, C22, C5, C2×C4, D4, C23, C10, C22⋊C4, C22×C4, C2×D4, C4○D4, C20, C2×C10, C2×C22⋊C4, C4×D4, C4⋊D4, C4.4D4, C41D4, C2×C20, C5×D4, C22×C10, C24.3C22, C5×C22⋊C4, C22×C20, D4×C10, C5×C4○D4, C10×C22⋊C4, D4×C20, C5×C4⋊D4, C5×C4.4D4, C5×C41D4, C5×C24.3C22

Smallest permutation representation of C5×C24.3C22
On 160 points
Generators in S160
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 65)(2 61)(3 62)(4 63)(5 64)(6 133)(7 134)(8 135)(9 131)(10 132)(11 85)(12 81)(13 82)(14 83)(15 84)(16 122)(17 123)(18 124)(19 125)(20 121)(21 129)(22 130)(23 126)(24 127)(25 128)(26 90)(27 86)(28 87)(29 88)(30 89)(31 150)(32 146)(33 147)(34 148)(35 149)(36 110)(37 106)(38 107)(39 108)(40 109)(41 95)(42 91)(43 92)(44 93)(45 94)(46 72)(47 73)(48 74)(49 75)(50 71)(51 58)(52 59)(53 60)(54 56)(55 57)(66 77)(67 78)(68 79)(69 80)(70 76)(96 145)(97 141)(98 142)(99 143)(100 144)(101 137)(102 138)(103 139)(104 140)(105 136)(111 160)(112 156)(113 157)(114 158)(115 159)(116 152)(117 153)(118 154)(119 155)(120 151)
(1 45)(2 41)(3 42)(4 43)(5 44)(6 140)(7 136)(8 137)(9 138)(10 139)(11 53)(12 54)(13 55)(14 51)(15 52)(16 141)(17 142)(18 143)(19 144)(20 145)(21 155)(22 151)(23 152)(24 153)(25 154)(26 69)(27 70)(28 66)(29 67)(30 68)(31 156)(32 157)(33 158)(34 159)(35 160)(36 46)(37 47)(38 48)(39 49)(40 50)(56 81)(57 82)(58 83)(59 84)(60 85)(61 95)(62 91)(63 92)(64 93)(65 94)(71 109)(72 110)(73 106)(74 107)(75 108)(76 86)(77 87)(78 88)(79 89)(80 90)(96 121)(97 122)(98 123)(99 124)(100 125)(101 135)(102 131)(103 132)(104 133)(105 134)(111 149)(112 150)(113 146)(114 147)(115 148)(116 126)(117 127)(118 128)(119 129)(120 130)
(1 66)(2 67)(3 68)(4 69)(5 70)(6 23)(7 24)(8 25)(9 21)(10 22)(11 36)(12 37)(13 38)(14 39)(15 40)(16 33)(17 34)(18 35)(19 31)(20 32)(26 43)(27 44)(28 45)(29 41)(30 42)(46 53)(47 54)(48 55)(49 51)(50 52)(56 73)(57 74)(58 75)(59 71)(60 72)(61 78)(62 79)(63 80)(64 76)(65 77)(81 106)(82 107)(83 108)(84 109)(85 110)(86 93)(87 94)(88 95)(89 91)(90 92)(96 113)(97 114)(98 115)(99 111)(100 112)(101 118)(102 119)(103 120)(104 116)(105 117)(121 146)(122 147)(123 148)(124 149)(125 150)(126 133)(127 134)(128 135)(129 131)(130 132)(136 153)(137 154)(138 155)(139 151)(140 152)(141 158)(142 159)(143 160)(144 156)(145 157)
(1 12)(2 13)(3 14)(4 15)(5 11)(6 144)(7 145)(8 141)(9 142)(10 143)(16 137)(17 138)(18 139)(19 140)(20 136)(21 159)(22 160)(23 156)(24 157)(25 158)(26 50)(27 46)(28 47)(29 48)(30 49)(31 152)(32 153)(33 154)(34 155)(35 151)(36 70)(37 66)(38 67)(39 68)(40 69)(41 55)(42 51)(43 52)(44 53)(45 54)(56 94)(57 95)(58 91)(59 92)(60 93)(61 82)(62 83)(63 84)(64 85)(65 81)(71 90)(72 86)(73 87)(74 88)(75 89)(76 110)(77 106)(78 107)(79 108)(80 109)(96 134)(97 135)(98 131)(99 132)(100 133)(101 122)(102 123)(103 124)(104 125)(105 121)(111 130)(112 126)(113 127)(114 128)(115 129)(116 150)(117 146)(118 147)(119 148)(120 149)
(1 145 12 7)(2 141 13 8)(3 142 14 9)(4 143 15 10)(5 144 11 6)(16 55 137 41)(17 51 138 42)(18 52 139 43)(19 53 140 44)(20 54 136 45)(21 68 159 39)(22 69 160 40)(23 70 156 36)(24 66 157 37)(25 67 158 38)(26 35 50 151)(27 31 46 152)(28 32 47 153)(29 33 48 154)(30 34 49 155)(56 134 94 96)(57 135 95 97)(58 131 91 98)(59 132 92 99)(60 133 93 100)(61 122 82 101)(62 123 83 102)(63 124 84 103)(64 125 85 104)(65 121 81 105)(71 130 90 111)(72 126 86 112)(73 127 87 113)(74 128 88 114)(75 129 89 115)(76 150 110 116)(77 146 106 117)(78 147 107 118)(79 148 108 119)(80 149 109 120)
(1 106 66 81)(2 107 67 82)(3 108 68 83)(4 109 69 84)(5 110 70 85)(6 125 23 150)(7 121 24 146)(8 122 25 147)(9 123 21 148)(10 124 22 149)(11 76 36 64)(12 77 37 65)(13 78 38 61)(14 79 39 62)(15 80 40 63)(16 135 33 128)(17 131 34 129)(18 132 35 130)(19 133 31 126)(20 134 32 127)(26 59 43 71)(27 60 44 72)(28 56 45 73)(29 57 41 74)(30 58 42 75)(46 93 53 86)(47 94 54 87)(48 95 55 88)(49 91 51 89)(50 92 52 90)(96 153 113 136)(97 154 114 137)(98 155 115 138)(99 151 111 139)(100 152 112 140)(101 158 118 141)(102 159 119 142)(103 160 120 143)(104 156 116 144)(105 157 117 145)

G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,65)(2,61)(3,62)(4,63)(5,64)(6,133)(7,134)(8,135)(9,131)(10,132)(11,85)(12,81)(13,82)(14,83)(15,84)(16,122)(17,123)(18,124)(19,125)(20,121)(21,129)(22,130)(23,126)(24,127)(25,128)(26,90)(27,86)(28,87)(29,88)(30,89)(31,150)(32,146)(33,147)(34,148)(35,149)(36,110)(37,106)(38,107)(39,108)(40,109)(41,95)(42,91)(43,92)(44,93)(45,94)(46,72)(47,73)(48,74)(49,75)(50,71)(51,58)(52,59)(53,60)(54,56)(55,57)(66,77)(67,78)(68,79)(69,80)(70,76)(96,145)(97,141)(98,142)(99,143)(100,144)(101,137)(102,138)(103,139)(104,140)(105,136)(111,160)(112,156)(113,157)(114,158)(115,159)(116,152)(117,153)(118,154)(119,155)(120,151), (1,45)(2,41)(3,42)(4,43)(5,44)(6,140)(7,136)(8,137)(9,138)(10,139)(11,53)(12,54)(13,55)(14,51)(15,52)(16,141)(17,142)(18,143)(19,144)(20,145)(21,155)(22,151)(23,152)(24,153)(25,154)(26,69)(27,70)(28,66)(29,67)(30,68)(31,156)(32,157)(33,158)(34,159)(35,160)(36,46)(37,47)(38,48)(39,49)(40,50)(56,81)(57,82)(58,83)(59,84)(60,85)(61,95)(62,91)(63,92)(64,93)(65,94)(71,109)(72,110)(73,106)(74,107)(75,108)(76,86)(77,87)(78,88)(79,89)(80,90)(96,121)(97,122)(98,123)(99,124)(100,125)(101,135)(102,131)(103,132)(104,133)(105,134)(111,149)(112,150)(113,146)(114,147)(115,148)(116,126)(117,127)(118,128)(119,129)(120,130), (1,66)(2,67)(3,68)(4,69)(5,70)(6,23)(7,24)(8,25)(9,21)(10,22)(11,36)(12,37)(13,38)(14,39)(15,40)(16,33)(17,34)(18,35)(19,31)(20,32)(26,43)(27,44)(28,45)(29,41)(30,42)(46,53)(47,54)(48,55)(49,51)(50,52)(56,73)(57,74)(58,75)(59,71)(60,72)(61,78)(62,79)(63,80)(64,76)(65,77)(81,106)(82,107)(83,108)(84,109)(85,110)(86,93)(87,94)(88,95)(89,91)(90,92)(96,113)(97,114)(98,115)(99,111)(100,112)(101,118)(102,119)(103,120)(104,116)(105,117)(121,146)(122,147)(123,148)(124,149)(125,150)(126,133)(127,134)(128,135)(129,131)(130,132)(136,153)(137,154)(138,155)(139,151)(140,152)(141,158)(142,159)(143,160)(144,156)(145,157), (1,12)(2,13)(3,14)(4,15)(5,11)(6,144)(7,145)(8,141)(9,142)(10,143)(16,137)(17,138)(18,139)(19,140)(20,136)(21,159)(22,160)(23,156)(24,157)(25,158)(26,50)(27,46)(28,47)(29,48)(30,49)(31,152)(32,153)(33,154)(34,155)(35,151)(36,70)(37,66)(38,67)(39,68)(40,69)(41,55)(42,51)(43,52)(44,53)(45,54)(56,94)(57,95)(58,91)(59,92)(60,93)(61,82)(62,83)(63,84)(64,85)(65,81)(71,90)(72,86)(73,87)(74,88)(75,89)(76,110)(77,106)(78,107)(79,108)(80,109)(96,134)(97,135)(98,131)(99,132)(100,133)(101,122)(102,123)(103,124)(104,125)(105,121)(111,130)(112,126)(113,127)(114,128)(115,129)(116,150)(117,146)(118,147)(119,148)(120,149), (1,145,12,7)(2,141,13,8)(3,142,14,9)(4,143,15,10)(5,144,11,6)(16,55,137,41)(17,51,138,42)(18,52,139,43)(19,53,140,44)(20,54,136,45)(21,68,159,39)(22,69,160,40)(23,70,156,36)(24,66,157,37)(25,67,158,38)(26,35,50,151)(27,31,46,152)(28,32,47,153)(29,33,48,154)(30,34,49,155)(56,134,94,96)(57,135,95,97)(58,131,91,98)(59,132,92,99)(60,133,93,100)(61,122,82,101)(62,123,83,102)(63,124,84,103)(64,125,85,104)(65,121,81,105)(71,130,90,111)(72,126,86,112)(73,127,87,113)(74,128,88,114)(75,129,89,115)(76,150,110,116)(77,146,106,117)(78,147,107,118)(79,148,108,119)(80,149,109,120), (1,106,66,81)(2,107,67,82)(3,108,68,83)(4,109,69,84)(5,110,70,85)(6,125,23,150)(7,121,24,146)(8,122,25,147)(9,123,21,148)(10,124,22,149)(11,76,36,64)(12,77,37,65)(13,78,38,61)(14,79,39,62)(15,80,40,63)(16,135,33,128)(17,131,34,129)(18,132,35,130)(19,133,31,126)(20,134,32,127)(26,59,43,71)(27,60,44,72)(28,56,45,73)(29,57,41,74)(30,58,42,75)(46,93,53,86)(47,94,54,87)(48,95,55,88)(49,91,51,89)(50,92,52,90)(96,153,113,136)(97,154,114,137)(98,155,115,138)(99,151,111,139)(100,152,112,140)(101,158,118,141)(102,159,119,142)(103,160,120,143)(104,156,116,144)(105,157,117,145)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,65)(2,61)(3,62)(4,63)(5,64)(6,133)(7,134)(8,135)(9,131)(10,132)(11,85)(12,81)(13,82)(14,83)(15,84)(16,122)(17,123)(18,124)(19,125)(20,121)(21,129)(22,130)(23,126)(24,127)(25,128)(26,90)(27,86)(28,87)(29,88)(30,89)(31,150)(32,146)(33,147)(34,148)(35,149)(36,110)(37,106)(38,107)(39,108)(40,109)(41,95)(42,91)(43,92)(44,93)(45,94)(46,72)(47,73)(48,74)(49,75)(50,71)(51,58)(52,59)(53,60)(54,56)(55,57)(66,77)(67,78)(68,79)(69,80)(70,76)(96,145)(97,141)(98,142)(99,143)(100,144)(101,137)(102,138)(103,139)(104,140)(105,136)(111,160)(112,156)(113,157)(114,158)(115,159)(116,152)(117,153)(118,154)(119,155)(120,151), (1,45)(2,41)(3,42)(4,43)(5,44)(6,140)(7,136)(8,137)(9,138)(10,139)(11,53)(12,54)(13,55)(14,51)(15,52)(16,141)(17,142)(18,143)(19,144)(20,145)(21,155)(22,151)(23,152)(24,153)(25,154)(26,69)(27,70)(28,66)(29,67)(30,68)(31,156)(32,157)(33,158)(34,159)(35,160)(36,46)(37,47)(38,48)(39,49)(40,50)(56,81)(57,82)(58,83)(59,84)(60,85)(61,95)(62,91)(63,92)(64,93)(65,94)(71,109)(72,110)(73,106)(74,107)(75,108)(76,86)(77,87)(78,88)(79,89)(80,90)(96,121)(97,122)(98,123)(99,124)(100,125)(101,135)(102,131)(103,132)(104,133)(105,134)(111,149)(112,150)(113,146)(114,147)(115,148)(116,126)(117,127)(118,128)(119,129)(120,130), (1,66)(2,67)(3,68)(4,69)(5,70)(6,23)(7,24)(8,25)(9,21)(10,22)(11,36)(12,37)(13,38)(14,39)(15,40)(16,33)(17,34)(18,35)(19,31)(20,32)(26,43)(27,44)(28,45)(29,41)(30,42)(46,53)(47,54)(48,55)(49,51)(50,52)(56,73)(57,74)(58,75)(59,71)(60,72)(61,78)(62,79)(63,80)(64,76)(65,77)(81,106)(82,107)(83,108)(84,109)(85,110)(86,93)(87,94)(88,95)(89,91)(90,92)(96,113)(97,114)(98,115)(99,111)(100,112)(101,118)(102,119)(103,120)(104,116)(105,117)(121,146)(122,147)(123,148)(124,149)(125,150)(126,133)(127,134)(128,135)(129,131)(130,132)(136,153)(137,154)(138,155)(139,151)(140,152)(141,158)(142,159)(143,160)(144,156)(145,157), (1,12)(2,13)(3,14)(4,15)(5,11)(6,144)(7,145)(8,141)(9,142)(10,143)(16,137)(17,138)(18,139)(19,140)(20,136)(21,159)(22,160)(23,156)(24,157)(25,158)(26,50)(27,46)(28,47)(29,48)(30,49)(31,152)(32,153)(33,154)(34,155)(35,151)(36,70)(37,66)(38,67)(39,68)(40,69)(41,55)(42,51)(43,52)(44,53)(45,54)(56,94)(57,95)(58,91)(59,92)(60,93)(61,82)(62,83)(63,84)(64,85)(65,81)(71,90)(72,86)(73,87)(74,88)(75,89)(76,110)(77,106)(78,107)(79,108)(80,109)(96,134)(97,135)(98,131)(99,132)(100,133)(101,122)(102,123)(103,124)(104,125)(105,121)(111,130)(112,126)(113,127)(114,128)(115,129)(116,150)(117,146)(118,147)(119,148)(120,149), (1,145,12,7)(2,141,13,8)(3,142,14,9)(4,143,15,10)(5,144,11,6)(16,55,137,41)(17,51,138,42)(18,52,139,43)(19,53,140,44)(20,54,136,45)(21,68,159,39)(22,69,160,40)(23,70,156,36)(24,66,157,37)(25,67,158,38)(26,35,50,151)(27,31,46,152)(28,32,47,153)(29,33,48,154)(30,34,49,155)(56,134,94,96)(57,135,95,97)(58,131,91,98)(59,132,92,99)(60,133,93,100)(61,122,82,101)(62,123,83,102)(63,124,84,103)(64,125,85,104)(65,121,81,105)(71,130,90,111)(72,126,86,112)(73,127,87,113)(74,128,88,114)(75,129,89,115)(76,150,110,116)(77,146,106,117)(78,147,107,118)(79,148,108,119)(80,149,109,120), (1,106,66,81)(2,107,67,82)(3,108,68,83)(4,109,69,84)(5,110,70,85)(6,125,23,150)(7,121,24,146)(8,122,25,147)(9,123,21,148)(10,124,22,149)(11,76,36,64)(12,77,37,65)(13,78,38,61)(14,79,39,62)(15,80,40,63)(16,135,33,128)(17,131,34,129)(18,132,35,130)(19,133,31,126)(20,134,32,127)(26,59,43,71)(27,60,44,72)(28,56,45,73)(29,57,41,74)(30,58,42,75)(46,93,53,86)(47,94,54,87)(48,95,55,88)(49,91,51,89)(50,92,52,90)(96,153,113,136)(97,154,114,137)(98,155,115,138)(99,151,111,139)(100,152,112,140)(101,158,118,141)(102,159,119,142)(103,160,120,143)(104,156,116,144)(105,157,117,145) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,65),(2,61),(3,62),(4,63),(5,64),(6,133),(7,134),(8,135),(9,131),(10,132),(11,85),(12,81),(13,82),(14,83),(15,84),(16,122),(17,123),(18,124),(19,125),(20,121),(21,129),(22,130),(23,126),(24,127),(25,128),(26,90),(27,86),(28,87),(29,88),(30,89),(31,150),(32,146),(33,147),(34,148),(35,149),(36,110),(37,106),(38,107),(39,108),(40,109),(41,95),(42,91),(43,92),(44,93),(45,94),(46,72),(47,73),(48,74),(49,75),(50,71),(51,58),(52,59),(53,60),(54,56),(55,57),(66,77),(67,78),(68,79),(69,80),(70,76),(96,145),(97,141),(98,142),(99,143),(100,144),(101,137),(102,138),(103,139),(104,140),(105,136),(111,160),(112,156),(113,157),(114,158),(115,159),(116,152),(117,153),(118,154),(119,155),(120,151)], [(1,45),(2,41),(3,42),(4,43),(5,44),(6,140),(7,136),(8,137),(9,138),(10,139),(11,53),(12,54),(13,55),(14,51),(15,52),(16,141),(17,142),(18,143),(19,144),(20,145),(21,155),(22,151),(23,152),(24,153),(25,154),(26,69),(27,70),(28,66),(29,67),(30,68),(31,156),(32,157),(33,158),(34,159),(35,160),(36,46),(37,47),(38,48),(39,49),(40,50),(56,81),(57,82),(58,83),(59,84),(60,85),(61,95),(62,91),(63,92),(64,93),(65,94),(71,109),(72,110),(73,106),(74,107),(75,108),(76,86),(77,87),(78,88),(79,89),(80,90),(96,121),(97,122),(98,123),(99,124),(100,125),(101,135),(102,131),(103,132),(104,133),(105,134),(111,149),(112,150),(113,146),(114,147),(115,148),(116,126),(117,127),(118,128),(119,129),(120,130)], [(1,66),(2,67),(3,68),(4,69),(5,70),(6,23),(7,24),(8,25),(9,21),(10,22),(11,36),(12,37),(13,38),(14,39),(15,40),(16,33),(17,34),(18,35),(19,31),(20,32),(26,43),(27,44),(28,45),(29,41),(30,42),(46,53),(47,54),(48,55),(49,51),(50,52),(56,73),(57,74),(58,75),(59,71),(60,72),(61,78),(62,79),(63,80),(64,76),(65,77),(81,106),(82,107),(83,108),(84,109),(85,110),(86,93),(87,94),(88,95),(89,91),(90,92),(96,113),(97,114),(98,115),(99,111),(100,112),(101,118),(102,119),(103,120),(104,116),(105,117),(121,146),(122,147),(123,148),(124,149),(125,150),(126,133),(127,134),(128,135),(129,131),(130,132),(136,153),(137,154),(138,155),(139,151),(140,152),(141,158),(142,159),(143,160),(144,156),(145,157)], [(1,12),(2,13),(3,14),(4,15),(5,11),(6,144),(7,145),(8,141),(9,142),(10,143),(16,137),(17,138),(18,139),(19,140),(20,136),(21,159),(22,160),(23,156),(24,157),(25,158),(26,50),(27,46),(28,47),(29,48),(30,49),(31,152),(32,153),(33,154),(34,155),(35,151),(36,70),(37,66),(38,67),(39,68),(40,69),(41,55),(42,51),(43,52),(44,53),(45,54),(56,94),(57,95),(58,91),(59,92),(60,93),(61,82),(62,83),(63,84),(64,85),(65,81),(71,90),(72,86),(73,87),(74,88),(75,89),(76,110),(77,106),(78,107),(79,108),(80,109),(96,134),(97,135),(98,131),(99,132),(100,133),(101,122),(102,123),(103,124),(104,125),(105,121),(111,130),(112,126),(113,127),(114,128),(115,129),(116,150),(117,146),(118,147),(119,148),(120,149)], [(1,145,12,7),(2,141,13,8),(3,142,14,9),(4,143,15,10),(5,144,11,6),(16,55,137,41),(17,51,138,42),(18,52,139,43),(19,53,140,44),(20,54,136,45),(21,68,159,39),(22,69,160,40),(23,70,156,36),(24,66,157,37),(25,67,158,38),(26,35,50,151),(27,31,46,152),(28,32,47,153),(29,33,48,154),(30,34,49,155),(56,134,94,96),(57,135,95,97),(58,131,91,98),(59,132,92,99),(60,133,93,100),(61,122,82,101),(62,123,83,102),(63,124,84,103),(64,125,85,104),(65,121,81,105),(71,130,90,111),(72,126,86,112),(73,127,87,113),(74,128,88,114),(75,129,89,115),(76,150,110,116),(77,146,106,117),(78,147,107,118),(79,148,108,119),(80,149,109,120)], [(1,106,66,81),(2,107,67,82),(3,108,68,83),(4,109,69,84),(5,110,70,85),(6,125,23,150),(7,121,24,146),(8,122,25,147),(9,123,21,148),(10,124,22,149),(11,76,36,64),(12,77,37,65),(13,78,38,61),(14,79,39,62),(15,80,40,63),(16,135,33,128),(17,131,34,129),(18,132,35,130),(19,133,31,126),(20,134,32,127),(26,59,43,71),(27,60,44,72),(28,56,45,73),(29,57,41,74),(30,58,42,75),(46,93,53,86),(47,94,54,87),(48,95,55,88),(49,91,51,89),(50,92,52,90),(96,153,113,136),(97,154,114,137),(98,155,115,138),(99,151,111,139),(100,152,112,140),(101,158,118,141),(102,159,119,142),(103,160,120,143),(104,156,116,144),(105,157,117,145)]])

140 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4L4M4N4O4P5A5B5C5D10A···10AB10AC···10AR20A···20AV20AW···20BL
order12···222224···44444555510···1010···1020···2020···20
size11···144442···2444411111···14···42···24···4

140 irreducible representations

dim1111111111112222
type++++++
imageC1C2C2C2C2C4C5C10C10C10C10C20D4C4○D4C5×D4C5×C4○D4
kernelC5×C24.3C22C2×C4×C20C10×C22⋊C4C10×C4⋊C4D4×C2×C10D4×C10C24.3C22C2×C42C2×C22⋊C4C2×C4⋊C4C22×D4C2×D4C2×C20C2×C10C2×C4C22
# reps11411844164432843216

Matrix representation of C5×C24.3C22 in GL5(𝔽41)

10000
016000
001600
000180
000018
,
10000
040200
00100
000139
000040
,
10000
01000
00100
000400
000040
,
10000
040000
004000
000400
000040
,
400000
040000
004000
00010
00001
,
90000
0321800
00900
000400
000401
,
10000
013900
014000
000139
000140

G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,18,0,0,0,0,0,18],[1,0,0,0,0,0,40,0,0,0,0,2,1,0,0,0,0,0,1,0,0,0,0,39,40],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[9,0,0,0,0,0,32,0,0,0,0,18,9,0,0,0,0,0,40,40,0,0,0,0,1],[1,0,0,0,0,0,1,1,0,0,0,39,40,0,0,0,0,0,1,1,0,0,0,39,40] >;

C5×C24.3C22 in GAP, Magma, Sage, TeX

C_5\times C_2^4._3C_2^2
% in TeX

G:=Group("C5xC2^4.3C2^2");
// GroupNames label

G:=SmallGroup(320,891);
// by ID

G=gap.SmallGroup(320,891);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,1120,589,1408,1766,436]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=d^2=e^2=1,f^2=e,g^2=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,f*b*f^-1=b*c=c*b,g*b*g^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e>;
// generators/relations

׿
×
𝔽